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Some Remarks Concerning Stability for 
Nonstationary Quantum Systems 
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The problem of characterizing stability and instability for general nonstationary 
quantum systems is investigated. Some characterizations are reported and some 
elementary properties of a topological characterization are established. Then, it 
is proven, by considering a simple example, that there are nonperiodic driven 
systems whose orbits are neither precompact nor leave on average any compact 
set. Autocorrelation measures are computed and the possible roles of the 
generalizes quasienergy operator and energy growth are briefly discussed. 
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growth. 

1. INTRODUCTION 

In this paper  we s tudy the charac ter iza t ion  of stable and unstable states for 
general nons ta t ionary  quan tum systems. Litt le is known about  the time 
evolution of quan tum systems with t ime-dependent  Hamil tonians ,  a l though 
it is a p roblem of significant interest, tl-24) The quan tum time evolut ion is 
given by a strongly, cont inuous  family of uni tary opera tors  (p ropaga to r )  
U(t, r) acting on the separable  Hi lber t  space ~ of quan tum states, such 
that 

U(t, r) U(r, s) = U(t, s) 

U(t, t) = I ( identi ty opera to r )  

for all t, r, s. If, at t = 0 ,  ~, = ~b o e,,~,'~, its time evolut ion is given by the 
(weak) solut ion U(t, 0)~b o of the Schr rd inger  equation.  If the Hami l ton ian  
is t ime-periodic with per iod T, then U ( t +  T, r +  T ) =  U(t, r) and we have 
the Floquet  opera to r  U E - U ( T ,  0) at our  disposal3 ~'2'19) Here, we shall 
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focus our attention on the long-time behavior of driven systems, i.e., the 
so-called stability problem. 

The condition of quantum stability may be formulated in different 
ways, and aspects of this concept have been related to the RAGE 
theorem, ~ energy growth as function of time, ~t'2"9'~~176 atomic ioniza- 
tion, ~2"~9~ trajectories leaving any finite-dimensional subspace of the Hilbert 
space, ~,9~ etc. These aspects are not unrelated, and the understanding of 
those relations is a problem of major interest. 

Let U denote U F in the periodic case and U(t ,O)=e  -m'  in the 
autonomous case, where H is the Hamiltonian operator. If the underlying 
physical model is time-independent or time-periodic, the quantum stability 
problem has been reduced to the spectral analysis of U. I~ 10,19.241 More 
precisely, the quantum stable subspace and unstable subspace have been 
assigned, respectively, to the point spectral subspace .~po(U) and the 
continuous subspace Jf~oo,(U). 

In the case of nonperiodic time dependence we do not have a clear 
spectral characterization of stability, and we are faced with the problem of 
giving a satisfactory definition. At least four different approaches to this 
problem have been proposed. The first one is to consider the autocorrela- 
tion function for nontrivial ~b ~ .Yg, 

C~(t)= lira -1 (U(s ,O)Ol  U( t+s ,O)~k)ds  

If this limit exists, one can apply Bochner's theorem ~ and conclude 
that there is a positive measure ~ ,  the so-called autocorrelation measure, 
such that 

I? C , ( m )  = e -v ' ' '  do'r (1) 

The autocorrelation measures are generalizations of spectral measures. ~3~ In 
this approach one says that ~ belongs to the stable subspace if a~ is pure 
point, and to the unstable subspace if a~ is pure continuous. 

The second approach is to study the quasienergy operator, ~8'9"~9"v~ i.e., 
a self-adjoint operator formally given by 

0 
K =  - i ~ + H ( t )  (2) 

acting in some enlarged Hilbert space. Here the stability problem can be 
summarized by asking if K has pure point spectrum. The quasienergy 
operator K was previously defined for periodic Hamiltonians, ~8'21'23~ and 
then generalized to Hamiltonians H =  Ho + V( t ) with V( t ) = V( O( t ) ), where 
O(t) is the trajectory of an invertible classical dynamical system having an 
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invariant ergodic measure; ~9) in the latter case the results are usually stated 
for typical sets with respect to that measure. ~176 It has been found that 
when the autocorrelation of the potential V(O(t)) decays rapidly, the 
average energy grows linearly, and when the autocorrelations do not decay 
fast enough, the long-time behavior may depend on details of the particular 
model, e.g., on differentiability properties of the potential. ~m'-''-~ In the case 
of quasiperiodic time evolution (finite number of fundamental frequencies) 
there is also a natural generalization of the Floquet operator ~9) and its 
spectrum is in one-to-one correspondence with the spectrum of the 
generalized quasienergy operator. If V(t) is periodic, the spectral properties 
of K, or the associated Floquet operator, have been successfully used to 
characterize quantum stability and instabilityJ 2"9"1~ 2~ For related 
results in the case of quasiperiodic driven systems we refer to the work of 
Jauslin and Lebowitz. (9) 

The third approach is motivated by many models whose Hamiltonians 
can be put in the form H =  H 0 + V(t), where H 0 is an unbounded discrete 
Hamiltonian.l~ 7,~0.~9 23) Specific cases of interest include the harmonic 
and anharmonic oscillators, the rotor, and a particle in a finite box. The 
instability is associated to an unbounded absorption of energy of the 
unperturbed system from the perturbation V(t), so that the expectation 
value of H o, (U(t, O)~o I Ho U(t, 0)~o), becomes an unbounded function of 
time t. We then suggest analyzing the behavior of an "abstract energy" we 
shall represent by an unbounded positive self-adjoint operator ,4: dom ,4 c 
~ - . ~ ,  with pure point spectrum, ,4~0,,=2,,~0,,, 0~<,!,,~<2,,+,. For 
simplicity we shall avoid some involved domain questions by assuming 
that if ~oEdom,4, then U(t,O)~oEdomA for all t~>0, so that E~(t)A _= 
(U(t, O)~o],4U(t, 0)~o) is finite for any fixed t>~0. It is conceivable then 
that stability might be related to bounded functions E~(t), and that stability 
results do not depend on the particular A one picks up (see below). 

The last approach we comment upon is based on results by Enss and 
Veselic. t~l They addressed the question of possible generalizations of the 
RAGE theorem to the general nonperiodic case and gave a topological 
characterization of ~o (U) .  More precisely, they proved that for time- 
periodic Hamiltonians (or time-independent models) 9ffpo(U) coincides with 
the space .~P(U) of vectors with precompact (totally bounded) trajectories, 
and that J(F~on,(U) = oufr(U), where 

~ r ( U ) =  e ~  lim -1 [[KU(t,O)~blf2dt=O 

for any compact operator K} (3) 
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Important compact operators are the projectors onto finite subspaces of 
~ ,  so that the elements of ~r ~r are interpreted as the vectors that under 
time evolution leave--on average--any finite-dimensional subspace of ~ .  
A significant class of compact operators here is given by spectral projectors 
onto finite-dimensional eigenspaces of the energy A (as defined above), and 
since (3) does not depend on the specific compact projector K, we have a 
hint that the boundedness of EA(t) should not depend on the particular 
energy A, although the situation is not clear yet. t9~ It is then natural to take 
JC~P(U) and 9~,r as possible generalizations of the stable and unstable 
subspaces, respectively, even in the nonperiodic case. 

The point of this paper is to initiate a discussion about the use of these 
approaches in the case of nonperiodic time dependence. We collect some 
subsets of ~ of interest in the following definition; recall that it is 
implicitly assumed that the operator A is positive, unbounded, and dis- 
crete, such that dora A is invariant under time evolution, 

De f in i t i on  1. Let U(t, r) be a propagator acting on the Hilbert 
space ~ .  

(i) 
(ii) 

(iii) 

(iv) 

o,~P(U) = {~b ~ ~g' I {U(t, 0)~ { t~>0} is precompact in Jog'}. 

~ffr(U) = {~o ~ W I ~o satisfies the right-hand side of (3)}. 

5~bd(A) = {~o ~ dora A I the function t--* EA(t) is bounded}. 

5'~ -= dom A c~ ,.~bd(.4 ) • 

We have simplified the definitions of ,9'~bCt(A) and 5~Un(A) by assuming 
that dora A is invariant under time evolution. In fact, the point spectrum 
of the Floquet operator does not ensure the boundedness of the function 

,4 E~(t) if, for example, U(t, 0)~ escapes dom A for finite t. It seems that 
at present there is no comprehensive result concerning this question. 
We note that another definition of states of bounded energy has been 
proposed; (1'9'1~ it is based on the spectral projections of A corresponding 
to large eigenvalues and avoids such domain questions: although some 
important relations between that definition and ~"ffpo(U) and ~n , t (U)  have 
been found, (1'9'~~ here we restrict ourselves to the more natural sets 
5'~ and 5PU"(A). 

According to the above-quoted results and references, for periodic and 
autonomous quantum systems we have 

= a~p(u) �9 ~ r ( u )  (4) 

This relation also holds in the quasiperiodic case, (9) with U standing for the 
generalized Floquet operator acting on an enlarged Hilbert space. 

It seems we have a rather clear characterization of the stable ~r 
and unstable ~ r ( U )  subspaces for periodic and autonomous systems, and 
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recent advances toward such a classification for the case of quasiperiodic 
potentials. What can be said about general time dependence? Certainly the 
situation is more involved, and the example presented in Section 3 
indicates some difficulties one may face in such studies. 

It is worth mentioning that for Hamiltonians quadratic in positions 
and momenta with time-periodic coefficients, the possible asymptotic 
behaviors--in the spectral and, consequently, also in the topological 
sense--have been completely catalogued. ~241 

In Section 2 some basic properties of the sets that appeared in the 
above definition are summarized. In particular, it is shown that for general 
time dependence dora A c~ ~ r ( U )  c ~U"(A) and ~ugp(u) = ~9~ In 
Section 3 it is shown, by considering a simple (nonphysical) example, that 
there are cases in which relation (4) does not hold; the autocorrelation 
measures of the system are computed and we have indications that the use 
of the spectral properties of possible generalizations of the quasienergy 
and/or Floquet operators will not be as direct as for autonomous, periodic 
and quasiperiodic quantum systems. 

2. S O M E  BASIC PROPERTIES 

To begin with, we underline that in this section U(t,O) denotes a 
propagator acting on ~,ut~ which we suppose can be nonperiodic. 

I . emma 2. (i) If ~0ejt~t(u), then for any compact operator 
K: Jt~ ~ jg,  

lira -1 IIKg(t,O)~oll &--O 

~ r ( U )  is a closed subspace of Jr 

~,ufP(U) is a closed subspace of ~ .  

(ii) 

(iii) 

Proof (i) Pick q~E~r(U) and K a compact operator. For each 
r > 0 fixed, we can apply the Schwarz inequality to get 

Is IIKu(t, 0)~oll &~< IIKu(t, 0)~01l 2 & 

l ]lKU(t,O)q~]ldt<~[!~ [IKU(t,O)q~][2dt] ~/2 
Then, 

and (i) follows. 
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(ii) It is trivial to see that ,Jf 'r(u) is a linear manifold. Let 

r ~ ~ r ( U ( t ,  0)) and K be a compact  operator.  Given e > 0, pick r ~ .deaf(U) 
such that  I1r <~. Thus 

t IIKU(t, 0)~oll z dt 
17 

1 IIKU(t,O)(~o-r162 

1~ 
~ [llKU(t,O)(~o-r162 2dr 

~<!f~ I-IlK fl 11 (~o-r + IIKU(t, 0)r 2 dt 

~< IIKII-' I1~o - r + 1 I -  IIKU(t, 0)r dt + 2 IIKII-' I1r - r 
Jo 

If r is sufficiently large, 

1 iiKU(t,O)Oll2dt< e 
T 

and one immediately sees that ~oeofff(u). This implies that ,~ffr(U) is 
closed; (ii) is proven. 

(iii) The proof  is outlined in the work of Enss and Veselic, ~I~ 
p. 164. II 

L e m m a  3. 

x ' p ( u )  • ~ f ( u )  

Proof. Let q9 ~ d~r(u)  and n ~ ~ P ( U ) .  Then 

((p I ~ )  = -  (q~l~)d t=-  (U( t ,  0)~o I U(t,O)Tz)dt 

For  each e > 0 there exists P,  that projects onto  a finite-dimensional sub- 
space of aft such that, for all t>~0, I I ( I - P ~ )  U(t, 0)xl[ < e/(211~oll); thus 

(q~ I rr) = ~  ((P~+I-P~)U(t,O)~o[ U(t,O)rc)dt 

- - i  <P.u(t, o)~o I u(t, o)~) at 

+1[ ~ ((I-P,)U(t, O)qJ I U(t, O)x)  dt 
gao 
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We see at once that 

I<~o I rc>l ~< II U(t, 0)~11 ~Jo IIP~ U(t, 0)~oll dt 

If 2 + II U(t, o)~oll ~ I1(1-Pc) u(t, o)rdl dt 

Since ~p~ Jgr(U), by Lemma l(i), 

r [IP~U(t,O)q~l[ d t<d(2  Ilrdl) 

i f r  is large enough. Therefore, ](~0 I ~)1 <e  for any ~>0,  and Lemma 3 is 
proven. | 

Propos i t ion  4. Let A be as defined in the last section; then: 

(i) Yg~(U)~Se~d(A) 

(ii) domA~o~r(u)csP~ 

Proof (i) Let (,0(~,_9~ then there exists M > 0  such that 
(U(t,  0)~o I A U(t, 0)~o ) ~< M for all t>~ 0. Since (~o,,)is a basis of Yg, we can 
write ~o(t) --- U(t, O)q> =~,,  a,,(t)9,,; then we get 

,t N ~" la,,(t)21<<.~2,,la,,(t)2i<~M, Vt>~0 
n ~> N n 

For each e > 0 there is N(e) such that 

la,,(t) l ' -~e Iko I[", Vt>~0 
n = N ( z )  + I 

If BN(~) denotes the projection operator onto the subspace spanned by 
i t .  t N~*)  "~J,l= t, we have 

IfB^,(,)~o(t)- ~o(t)ll-~ = ~ la,,(t)12 < ,  I[~oll 2, Vt~>0 
n ~  1 + N ( ~ )  

Since c is arbitrary and BN(~) projects onto a finite-dimensional subspace, 
we have q~ E 3/gP(U). 

(ii) The proof is immediate from (i) above, Lemma 3, and dom A = 
~9~un(A ) @ ~9~ ); indeed, 

5e"~(A)~dom A ~ [YgP(U)] l Ddom A ~ f ( U )  | 
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3. T H E  U - U N U S U A L  S U B S P A C E  

In this section we present an example for which relation (4) does not 
hold. Although rather peculiar, this example illustrates the possible 
"unusual" properties (see Section 4) of nonstationary quantum systems. 
We then define the "U-unusual" subspace aega(U) by the relation 

= ~ P ( U )  ~ ,.~f(U) ~ ~ a ( U )  

Example .  Let (e,), n/> 1, be a sequence with e,, ~ { -  1, O, 1 }. The 
model is given by the kicked Hamiltonian 

H=p2+x  ~ e,,3(t-n), x ~ [ 0 , 2 ~ )  (5) 
n~l 

acting on ~/g=L2(T). The temporal evolution operator until t =  ( n - 0 ) ,  
n ~ M [just before the (n + 1)th kick], is given by 

U(n,O)- V,,V,,_I ... V~ 

where Vj=e-iP2e-i~JX. Between two consecutive kicks we have free time 
evolution. This model is constituted of jumps (or no jump at all) between 
eigenstates of the free evolution operator, and our goal is to pick the 
consecutive jumps properly. If we denote the eigenstate of the unperturbed 
Hamiltonian p2 by ~bs=e -isx and Fj=et + e2 + ... + ej, we have 

U(n,O)~,=expl- i  ~ (Fj+s)2]exp[-i(F,,+s) x] 
j = l  

(U(n, O)~s [ pZU(n, O)~s) = (F,, + s) z 

Set u, = 4(I0" + 10"- ~ + ... + 10) for n >/1, Uo = 0, and choose 

1, j~A, , -[u, ,+l ,u , ,+lO "+~) 
ej-  --1, j6B,,-[u, ,+l+lO"+~,u, ,+2xlO "+~) (6) 

O, jEC,,--[u,,+l+2xlO"+l,u,,+l) 

Since ej= 0 iffj~ C,, and ( # Z  denotes the cardinality of the set Z) 

# C,, 1 
#A, ,+  #B , ,+  #C,, 2 

it follows that 

lira l f~  ilPsU(t, O)~k~l[2 dt 1 
~-oor 2 



Stability for Nonstationary Quantum Systems 1063 

where P~ is the (compact) projection operator onto the subspace spanned 
by ~0~. Therefore, ~ ~ ~f'f(U), and since {qG: s~7/} is a basis of g and by 
Lemma 2(iii) af'r(U) is closed, it follows that ~f~r(U)-- {0}. 

Since for each me ~, m>~s, there exists j e  N such that U(j, 0)qG= 
e ;~ .... )~,, for some phase factor O(s,m), the set {U(t, 0)~%: t>~0} is not 
precompact; then qGr and one can conclude that ~ P ( U ) =  {0}. 
Therefore ~f~ = g a ( u ) .  

In order to clarify the nature of this "unusual" behavior we compute 
the autocorrelation measures (3"6'2s) for the eigenvectors ~'s. For kicked 
systems we have 

1 N-I 
Cq,(m)=lirn ~ ~' (U(p,O)@l V(p+m,O)~,) 

p=O 

and the autocorrelation measure a ,  is given by relation (1). 
A direct calculation leads to 

l p+m S)2] 
Cg,,(m): u~oolim 1Np=, ~ fir 'r '+'expt_-'j=~+,(FJ+ 

We have Fp = Fp +,,, only in two situations. The first one is when both p 
and (p+m) belong to C,, for some n(Fp=Fp+,,=O), and for large N this 
occurs approximately N/2 times. The second situation occurs only for 
even m and when p =  (u,,-m/2), which happens once for each C,. Since 
n/u,, ~ 0 as n --* 0% this term does not contribute to C~,s(m ). 

Taking into account that %=0  i f j~  C,, we obtain 

6r,,r,+.,exp - i  ~ s 2 
U N  =1 ( ( p + m ) E C n  n p ~ C n  ) j=l+p 

1 ~ ( # C  _m)exp(_ims2 ) 
U N  n =  1 

= [exp(-ims'-)] (#C , , ) -Nm uN , 
n 1 

Then we get 

where { denotes the Lebesgue measure and 6s,- is the unit mass at s 2 
(mod 2g). From this we see that the autocorrelation measure cr,~ is the sum 
of a point part and a continuous part for all ~'s. This gives us some insight 
about ~a (U) .  Notice that for any ~0~dom 2 p2 p ,  E~( t )  is an unbounded 
function of time r 
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Summing up 

P r o p o s i t i o n  5. For the model (5)-(6) we have o~=ovt ' a (u)=  
5"""(p2), and for any q~, its autocorrelation measure is the sum of a pure 
point and a pure absolutely continuous part. 

Remarks. (i) The above example shows that [dom A ra Jt"~(U)] 
5"""(A) in some cases [see Proposition 4(ii)]. At the moment I cannot 
say if the equality in Proposition 4(i) holds, although there are examples 
showing that the equality does not hold if U(t, 0) is a family of nonunitary 
isometries. 

(ii) We have found that for ~'s the autocorrelation measure is not 
pure, i.e., it is neither pure continuous nor pure point. Therefore we have 
a strong indication that the spectral properties of generalized Floquet 
and quasienergy operators are of little interest for the stability problem 
of general nonautonomous systems, since for unitary and self-adjoint 
operators acting in a Hilbert space ,X the spectral measures are pure point 
for vectors in ~ o  and pure continuous for vectors in J-Fcont; moreover, 

= )ffpo �9 ~ o , t  (see Section 4). 

4. C O N C L U S I O N S  

The problem of characterizing the stable and unstable subspaces of 
driven systems is not yet well understood. We have reported briefly four 
possible approaches to this problem that have appeared in the literature, 
and analyzed more closely the generalization of the notion of point 
spectral subspace to systems governed by time-dependent Hamiltonians 
advocated by Enns and Veselic, IL ~0~ i.e., by using the notion of precompact 
trajectories. 

Another possible approach to the problem is to consider the time 
behavior of autocorrelation functions and the corresponding autocorrela- 
tion measures. In the cases of autonomous and time-periodically driven 
systems the autocorrelation measures coincide with the spectral measures 
of the corresponding Hamiltonian or Floquet operator. In the case of 
systems driven by some classical dynamic systems with an ergodic invariant 
measure (which includes the quasiperiodic caseC9J), some (expected) 
relations between the spectrum of the generalized quasienergy operator 
and the asymptotic behavior of autocorrelation functions have been 
found.18,9) 

Although it has been difficult to find analytical solutions and even 
to perform reliable numerical computations of the autocorrelation 
measures, 15-7'-'5~ the ad hoc example of Section 3, with o'f = o'r was 
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amenable to analytical treatment. Certainly, the "mixed" autocorrelation 
measures are not new; for instance, Combescure 15"6~ has computed the 
autocorrelation measures for both two-level systems and harmonic 
oscillators subjected to aperiodic kicks modulated according to the Thue-  
Morse sequence, t-'5~ and found that for some parameter values the 
autocorrelation measure is the sum of a pure point part and a pure singular 
continuous part for any nontrivial vector in the Hilbert space. However, 
there are indications that Combescure's results hold only for parameters in 
a set of zero Lebesgue measure, t-'6~ and the relation to the topological 
characterization of Enss and Veselic is not clear. The fact that the 
autocorrelation measure is the sum of a continuous part and a point part 
for any vector in the Hilbert space cannot happen for autonomous or 
periodically driven systems, and this also makes the use of the spectral 
properties of some kind of quasienergy operator for the study of the 
quantum stability of general driven systems questionable. 

Finally, we would like to mention that perhaps the adjective "unusual" 
used to classify our 'a may become inappropriate; it might, for instance, be 
replaced with "usual" in case someone is able to prove that Jf--JC'a is the 
rule for driven quantum systems. 
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